Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-body interactions are inferred by more interpretable physical features. We test NewtonNet on the prediction of several reactive and non-reactive high quality ab initio data sets including single small molecules, a large set of chemically diverse molecules, and methane and hydrogen combustion reactions, achieving state-of-the-art test performance on energies and forces with far greater data and computational efficiency than other deep learning models.more » « less
-
Abstract The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations withab initioMD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional,ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.more » « less
-
The process of developing new compounds and materials is increasingly driven by computational modeling and simulation, which allow us to characterize candidates before pursuing them in the laboratory. One of the non-trivial properties of interest for organic materials is their packing in the bulk, which is highly dependent on their molecular structure. By controlling the latter, we can realize materials with a desired density (as well as other target properties). Molecular dynamics simulations are a popular and reasonably accurate way to compute the bulk density of molecules, however, since these calculations are computationally intensive, they are not a practically viable option for high-throughput screening studies that assess material candidates on a massive scale. In this work, we employ machine learning to develop a data-derived prediction model that is an alternative to physics-based simulations, and we utilize it for the hyperscreening of 1.5 million small organic molecules as well as to gain insights into the relationship between structural makeup and packing density. We also use this study to analyze the learning curve of the employed neural network approach and gain empirical data on the dependence of model performance and training data size, which will inform future investigations.more » « less
-
Abstract Quantum chemistry must evolve if it wants to fully leverage the benefits of the internet age, where the worldwide web offers a vast tapestry of tools that enable users to communicate and interact with complex data at the speed and convenience of a button press. The Open Chemistry project has developed an open‐source framework that offers an end‐to‐end solution for producing, sharing, and visualizing quantum chemical data interactively on the web using an array of modern tools and approaches. These tools build on some of the best open‐source community projects such as Jupyter for interactive online notebooks, coupled with 3D accelerated visualization, state‐of‐the‐art computational chemistry codes including NWChem and Psi4, and emerging machine learning and data mining tools such as ChemML and ANI. They offer flexible formats to import and export data, along with approaches to compare computational and experimental data.more » « less
-
Abstract ChemMLis an open machine learning (ML) and informatics program suite that is designed to support and advance the data‐driven research paradigm that is currently emerging in the chemical and materials domain.ChemMLallows its users to perform various data science tasks and execute ML workflows that are adapted specifically for the chemical and materials context. Key features are automation, general‐purpose utility, versatility, and user‐friendliness in order to make the application of modern data science a viable and widely accessible proposition in the broader chemistry and materials community.ChemMLis also designed to facilitate methodological innovation, and it is one of the cornerstones of the software ecosystem for data‐driven in silico research. This article is categorized under:Software > Simulation MethodsComputer and Information Science > ChemoinformaticsStructure and Mechanism > Computational Materials ScienceSoftware > Molecular Modelingmore » « less
An official website of the United States government
